牛宝体育新闻
牛宝体育大数据方面核心技术有哪些?
大数据技术的体系庞大且复杂,基础的技术包含数据的采集、数据预处理、分布式存储、NoSQL数据库、数据仓库、机器学习、并行计算、可视化等各种技术范畴和不同的技术层面。
首先科学的给出一个通用化的大数据处理技术框架,主要分为下面几个方面:数据采集与预处理、数据存储、数据清洗、数据查询分析和数据可视化。
对于各种来源的数据,包括移动互联网数据、社交网络的数据等,这些结构化和非结构化的海量数据是零散的,也就是所谓的数据孤岛,此时的这些数据并没有什么意义,数据采集就是将这些数据写入数据仓库中,把零散的数据整合在一起,对这些数据综合起来进行分析。数据采集包括文件日志的采集、数据库日志的采集、关系型数据库的接入和应用程序的接入等。在数据量比较小的时候,可以写个定时的脚本将日志写入存储系统,但随着数据量的增长,这些方法无法提供数据安全保障,并且运维困难,需要更强壮的解决方案。
Flume NG作为实时日志收集系统,支持在日志系统中定制各类数据发送方,用于收集数据,同时,对数据进行简单处理,并写到各种数据接收方(比如文本,HDFS,Hbase等)。Flume NG采用的是三层架构:Agent层,Collector层和Store层,每一层均可水平拓展。其中Agent包含Source,Channel和 Sink,source用来消费(收集)数据源到channel组件中,channel作为中间临时存储,保存所有source的组件信息,sink从channel中读取数据,读取成功之后会删除channel中的信息。
NDC,Netease Data Canal,直译为网易数据运河系统,是网易针对结构化数据库的数据实时迁移、同步和订阅的平台化解决方案。它整合了网易过去在数据传输领域的各种工具和经验,将单机数据库、分布式数据库、OLAP系统以及下游应用通过数据链路串在一起。除了保障高效的数据传输外,NDC的设计遵循了单元化和平台化的设计哲学。
Logstash是开源的服务器端数据处理管道,能够同时从多个来源采集数据、转换数据,然后将数据发送到您最喜欢的 “存储库” 中。一般常用的存储库是Elasticsearch。Logstash 支持各种输入选择,可以在同一时间从众多常用的数据来源捕捉事件,能够以连续的流式传输方式,轻松地从您的日志、指标、Web 应用、数据存储以及各种 AWS 服务采集数据。
Sqoop,用来将关系型数据库和Hadoop中的数据进行相互转移的工具,可以将一个关系型数据库(例如Mysql、Oracle)中的数据导入到Hadoop(例如HDFS、Hive、Hbase)中,也可以将Hadoop(例如HDFS、Hive、Hbase)中的数据导入到关系型数据库(例如Mysql、Oracle)中。Sqoop 启用了一个 MapReduce 作业(极其容错的分布式并行计算)来执行任务。Sqoop 的另一大优势是其传输大量结构化或半结构化数据的过程是完全自动化的。
流式计算是行业研究的一个热点,流式计算对多个高吞吐量的数据源进行实时的清洗、聚合和分析,可以对存在于社交网站、新闻等的数据信息流进行快速的处理并反馈,目前大数据流分析工具有很多,比如开源的strom,spark streaming等。
Strom集群结构是有一个主节点(nimbus)和多个工作节点(supervisor)组成的主从结构,主节点通过配置静态指定或者在运行时动态选举,nimbus与supervisor都是Storm提供的后台守护进程,之间的通信是结合Zookeeper的状态变更通知和监控通知来处理。nimbus进程的主要职责是管理、协调和监控集群上运行的topology(包括topology的发布、任务指派、事件处理时重新指派任务等)。supervisor进程等待nimbus分配任务后生成并监控worker(jvm进程)执行任务。supervisor与worker运行在不同的jvm上,如果由supervisor启动的某个worker因为错误异常退出(或被kill掉),supervisor会尝试重新生成新的worker进程。
当使用上游模块的数据进行计算、统计、分析时,就可以使用消息系统,尤其是分布式消息系统。Kafka使用Scala进行编写,是一种分布式的、基于发布/订阅的消息系统。Kafka的设计理念之一就是同时提供离线处理和实时处理,以及将数据实时备份到另一个数据中心,Kafka可以有许多的生产者和消费者分享多个主题,将消息以topic为单位进行归纳;Kafka发布消息的程序称为producer,也叫生产者,预订topics并消费消息的程序称为consumer,也叫消费者;当Kafka以集群的方式运行时,可以由一个服务或者多个服务组成,每个服务叫做一个broker,运行过程中producer通过网络将消息发送到Kafka集群,集群向消费者提供消息。Kafka通过Zookeeper管理集群配置,选举leader,以及在Consumer Group发生变化时进行rebalance。Producer使用push模式将消息发布到broker,Consumer使用pull模式从broker订阅并消费消息。Kafka可以和Flume一起工作,如果需要将流式数据从Kafka转移到hadoop,可以使用Flume代理agent,将Kafka当做一个来源source,这样可以从Kafka读取数据到Hadoop。
Zookeeper是一个分布式的,开放源码的分布式应用程序协调服务,提供数据同步服务。它的作用主要有配置管理、名字服务、分布式锁和集群管理。配置管理指的是在一个地方修改了配置,那么对这个地方的配置感兴趣的所有的都可以获得变更,省去了手动拷贝配置的繁琐,还很好的保证了数据的可靠和一致性,同时它可以通过名字来获取资源或者服务的地址等信息,可以监控集群中机器的变化,实现了类似于心跳机制的功能。
Hadoop作为一个开源的框架,专为离线和大规模数据分析而设计牛宝体育,HDFS作为其核心的存储引擎,已被广泛用于数据存储。
HBase,是一个分布式的、面向列的开源数据库,可以认为是hdfs的封装,本质是数据存储、NoSQL数据库。HBase是一种Key/Value系统,部署在hdfs上,克服了hdfs在随机读写这个方面的缺点,与hadoop一样,Hbase目标主要依靠横向扩展,通过不断增加廉价的商用服务器,来增加计算和存储能力。
Phoenix,相当于一个Java中间件,帮助开发工程师能够像使用JDBC访问关系型数据库一样访问NoSQL数据库HBase。
Yarn是一种Hadoop资源管理器,可为上层应用提供统一的资源管理和调度,它的引入为集群在利用率、资源统一管理和数据共享等方面带来了巨大好处。Yarn由下面的几大组件构成:一个全局的资源管理器ResourceManager、ResourceManager的每个节点代理NodeManager、表示每个应用的Application以及每一个ApplicationMaster拥有多个Container在NodeManager上运行。
Redis是一种速度非常快的非关系数据库,可以存储键与5种不同类型的值之间的映射,可以将存储在内存的键值对数据持久化到硬盘中,使用复制特性来扩展性能,还可以使用客户端分片来扩展写性能。
Atlas是一个位于应用程序与MySQL之间的中间件。在后端DB看来,Atlas相当于连接它的客户端,在前端应用看来,Atlas相当于一个DB。Atlas作为服务端与应用程序通讯,它实现了MySQL的客户端和服务端协议,同时作为客户端与MySQL通讯。它对应用程序屏蔽了DB的细节,同时为了降低MySQL负担,它还维护了连接池。Atlas启动后会创建多个线程,其中一个为主线程,其余为工作线程。主线程负责监听所有的客户端连接请求,工作线程只监听主线程的命令请求。
Kudu是围绕Hadoop生态圈建立的存储引擎,Kudu拥有和Hadoop生态圈共同的设计理念,它运行在普通的服务器上、可分布式规模化部署、并且满足工业界的高可用要求。其设计理念为fast analytics on fast data。作为一个开源的存储引擎,可以同时提供低延迟的随机读写和高效的数据分析能力。Kudu不但提供了行级的插入、更新、删除API,同时也提供了接近Parquet性能的批量扫描操作。使用同一份存储,既可以进行随机读写,也可以满足数据分析的要求。Kudu的应用场景很广泛,比如可以进行实时的数据分析,用于数据可能会存在变化的时序数据应用等。
在数据存储过程中,涉及到的数据表都是成千上百列,包含各种复杂的Query,推荐使用列式存储方法,比如parquent,ORC等对数据进行压缩。Parquet 可以支持灵活的压缩选项,显著减少磁盘上的存储。
MapReduce作为Hadoop的查询引擎,用于大规模数据集的并行计算,”Map(映射)”和”Reduce(归约)”,是它的主要思想。它极大的方便了编程人员在不会分布式并行编程的情况下,将自己的程序运行在分布式系统中。
随着业务数据量的增多,需要进行训练和清洗的数据会变得越来越复杂,这个时候就需要任务调度系统,比如oozie或者azkaban,对关键任务进行调度和监控。
Oozie是用于Hadoop平台的一种工作流调度引擎,提供了RESTful API接口来接受用户的提交请求(提交工作流作业),当提交了workflow后,由工作流引擎负责workflow的执行以及状态的转换。用户在HDFS上部署好作业(MR作业),然后向Oozie提交Workflow,Oozie以异步方式将作业(MR作业)提交给Hadoop。这也是为什么当调用Oozie 的RESTful接口提交作业之后能立即返回一个JobId的原因,用户程序不必等待作业执行完成(因为有些大作业可能会执行很久(几个小时甚至几天))。Oozie在后台以异步方式,再将workflow对应的Action提交给hadoop执行。
流计算任务的处理平台Sloth,是网易数帆首个自研流计算平台,旨在解决企业内各产品日益增长的流计算需求。作为一个计算服务平台,其特点是易用、实时、可靠,为用户节省技术方面(开发、运维)的投入,帮助用户专注于解决产品本身的流计算需求。
网易数帆致力于服务企业实现数字化创新,除Sloth外,还打造数据开发治理平台EasyData、有数BI等大数据产品,已成功服务金融、国央企、物流、制造等行业领域数百家头部客户。欢迎体验成熟、全面的大数据可行性方法论,轻松实现企业业务增长:
Hive的核心工作就是把SQL语句翻译成MR程序,可以将结构化的数据映射为一张数据库表,并提供 HQL(Hive SQL)查询功能大数据。Hive本身不存储和计算数据,它完全依赖于HDFS和MapReduce。可以将Hive理解为一个客户端工具,将SQL操作转换为相应的MapReduce jobs,然后在hadoop上面运行。Hive支持标准的SQL语法,免去了用户编写MapReduce程序的过程,它的出现可以让那些精通SQL技能、但是不熟悉MapReduce 、编程能力较弱与不擅长Java语言的用户能够在HDFS大规模数据集上很方便地利用SQL 语言查询、汇总、分析数据。
Hive是为大数据批量处理而生的,Hive的出现解决了传统的关系型数据库(MySql、Oracle)在大数据处理上的瓶颈 。Hive 将执行计划分成map-shuffle-reduce-map-shuffle-reduce…的模型。如果一个Query会被编译成多轮MapReduce,则会有更多的写中间结果。由于MapReduce执行框架本身的特点,过多的中间过程会增加整个Query的执行时间。在Hive的运行过程中,用户只需要创建表,导入数据,编写SQL分析语句即可。剩下的过程由Hive框架自动的完成。
Impala是对Hive的一个补充,可以实现高效的SQL查询。使用Impala来实现SQL on Hadoop,用来进行大数据实时查询分析。通过熟悉的传统关系型数据库的SQL风格来操作大数据,同时数据也是可以存储到HDFS和HBase中的。Impala没有再使用缓慢的Hive+MapReduce批处理,而是通过使用与商用并行关系数据库中类似的分布式查询引擎(由Query Planner、Query Coordinator和Query Exec Engine三部分组成),可以直接从HDFS或HBase中用SELECT、JOIN和统计函数查询数据,从而大大降低了延迟。Impala将整个查询分成一执行计划树,而不是一连串的MapReduce任务,相比Hive没了MapReduce启动时间。
Hive 适合于长时间的批处理查询分析,而Impala适合于实时交互式SQL查询,Impala给数据人员提供了快速实验,验证想法的大数据分析工具,可以先使用Hive进行数据转换处理,之后使用Impala在Hive处理好后的数据集上进行快速的数据分析。总的来说:Impala把执行计划表现为一棵完整的执行计划树,可以更自然地分发执行计划到各个Impalad执行查询,而不用像Hive那样把它组合成管道型的map-reduce模式,以此保证Impala有更好的并发性和避免不必要的中间sort与shuffle。但是Impala不支持UDF,能处理的问题有一定的限制。
Spark拥有Hadoop MapReduce所具有的特点,它将Job中间输出结果保存在内存中,从而不需要读取HDFS。Spark 启用了内存分布数据集,除了能够提供交互式查询外,它还可以优化迭代工作负载。Spark 是在 Scala 语言中实现的,它将 Scala 用作其应用程序框架。与 Hadoop 不同,Spark 和 Scala 能够紧密集成,其中的 Scala 可以像操作本地集合对象一样轻松地操作分布式数据集。
Nutch 是一个开源Java 实现的搜索引擎。它提供了我们运行自己的搜索引擎所需的全部工具,包括全文搜索和Web爬虫。
Solr用Java编写、运行在Servlet容器(如Apache Tomcat或Jetty)的一个独立的企业级搜索应用的全文搜索服务器。它对外提供类似于Web-service的API接口,用户可以通过http请求,向搜索引擎服务器提交一定格式的XML文件,生成索引;也可以通过Http Get操作提出查找请求,并得到XML格式的返回结果。
Elasticsearch是一个开源的全文搜索引擎,基于Lucene的搜索服务器,可以快速的储存、搜索和分析海量的数据。设计用于云计算中,能够达到实时搜索,稳定,可靠,快速,安装使用方便。
还涉及到一些机器学习语言,比如,Mahout主要目标是创建一些可伸缩的机器学习算法,供开发人员在Apache的许可下免费使用;深度学习框架Caffe以及使用数据流图进行数值计算的开源软件库TensorFlow等,常用的机器学习算法比如,贝叶斯、逻辑回归、决策树、神经网络、协同过滤等。
对接一些BI平台,将分析得到的数据进行可视化,用于指导决策服务。主流的BI平台比如,国外的敏捷BI Tableau、Qlikview、PowrerBI等,国内的SmallBI和新兴的有数BI等。
其中,有数BI是网易数帆旗下企业级敏捷数据分析及可视化平台,能够实现企业数据需求,简单拖拽、轻松实现业务数据可视化分析,帮助企业用数据连接组织各角色,提升整体业务效率。如果贵公司正在寻找数据可视化产品,欢迎了解有数BI :
基于网络身份认证的协议Kerberos,用来在非安全网络中,对个人通信以安全的手段进行身份认证,它允许某实体在非安全网络环境下通信,向另一个实体以一种安全的方式证明自己的身份。
控制权限的ranger是一个Hadoop集群权限框架,提供操作、监控、管理复杂的数据权限,它提供一个集中的管理机制,管理基于yarn的Hadoop生态圈的所有数据权限。可以对Hadoop生态的组件如Hive,Hbase进行细粒度的数据访问控制。通过操作Ranger控制台,管理员可以轻松的通过配置策略来控制用户访问HDFS文件夹、HDFS文件、数据库、表、字段权限。这些策略可以为不同的用户和组来设置,同时权限可与hadoop无缝对接。
我们帮助各行业客户数字化转型升级,成功实现业务增长。点击查看部分案例,解锁企业专属转型新思路:
首先做为大数据,拿不到大量数据都白扯。现在由于机器学习的兴起,以及万金油算法的崛起,导致算法地位下降,数据地位提高了。举个通俗的例子,就好比由于教育的发展,导致个人智力重要性降低,教育背景变重要了,因为一般人按标准流程读个书,就能比牛顿懂得多了。谷歌就说:拿牛逼的数据喂给一个一般的算法,很多情况下好于拿傻傻的数据喂给牛逼的算法。而且知不知道弄个牛逼算法有多困难?一般人连这个困难度都搞不清楚好不好……拿数据很重要,巧妇难为无米之炊呀!所以为什么好多公司要烧钱抢入口,抢用户,是为了争夺数据源呀!不过运营,和产品更关注这个,我是程序员,我不管……
其次就是算数据,如果数据拿到直接就有价值地话,那也就不需要公司了,政府直接赚外快就好了。苹果落地都能看到,人家牛顿能整个万有引力,我就只能捡来吃掉,差距呀……所以数据在那里摆着,能挖出啥就各凭本事了。算数据就需要计算平台了,数据怎么存(HDFS, S3, HBase, Cassandra),怎么算(Hadoop, Spark)就靠咱们程序猿了……
再次就是卖得出去才能变现,否则就是搞公益了,比如《疑犯追踪》里面的李四和大锤他们……见人所未见,预测未来并趋利避害才是智能的终极目标以及存在意义,对吧?这个得靠大家一块儿琢磨。
其实我觉得最后那个才是“核心技术”,什么Spark,Storm,Deep-Learning,都是第二梯队的……当然,没有强大的算力做支撑,智能应该也无从说起吧。
大数据具有「体量大、结构多样、时效性强」等特征,要用好各类大数据,对数据源进行数据准备处理是必备的前置环节。电信运营商大数据面对着复杂的生产环境:设备厂商多、网元种类繁杂、数据类型及字段复杂、字段定义与电信技术交缠。传统数据处理体系中的 ETL(抽取、转换、加载)前置数据处理已不足以完成电信运营商复杂环境中对数据的解析、关联、标准化及准确性要求。因此,数据采集解析关键技术研究方面,需充分研究网元设备原始数据提供能力、数据接口方式、原始数据解析及标准化、跨行业数据融合、多层次数据关联等数据采集解析技术,在传统 ETL 前置数据处理的基础上,根据电信运营商大数据面广量大、动态复杂的特点,将网络原始数据梳理解析,初步加工为可用的规整且意义明确的元数据。这方面的工作是大数据技术构架的基础。此外,积极寻找并发掘网络数据外的其他关联数据源,并经采集解析相关的前置处理后引入大数据系统中,也是采集解析技术研究需要关注的研究方向。
通信技术在不断演进发展,通信设备也随之进行代际更替,数据应用对原始数据的粒度大数据、范围、类型等都不断提出更高的要求。例如使用 NFV(Network Function Virtualization,网络功能虚拟化)技术后新出现的虚拟网元、物联网设备、5G(The 5th Generation,第五代移动通信技术)新设备等;通信标准升级也带来了新通信功能技术点,如 VoLTE(Voice over LTE,基于 LTE 的语音)技术、最小化路测技术、SON(Self-Organizing Network,自组织网络)技术等;上层数据应用也对原始数据提出新需求,如对 MR(Measurement Report,测量报告)的定位需求、对数据采集周期缩小的需求等。电信运营商需深入研究并向设备厂商提出原始数据采集需求,推动设备厂商进行原始数据开发,及时准确地从设备上提供原始数据。
随着 IT 技术的发展,数据接口技术也在不断演进,如 CORBA(Common Object Request Broker Architecture,公共对象请求代理体系结构)接口的简化、FTP(File Transfer Protocol,文件传输协议)的高效加密、流式消息处理等技术出现后,为数据采集接口升级改造提供了技术条件。电信运营商需具体研究各类数据需求,研究从厂商网元设备、OMC(Operation and Maintenance Center,操作维护中心)、链路接口等多途径获取应用所需数据的接口方式,提出对现有不满足应用需求的接口进行改造的技术方案。
根据数据特点及上层应用的需求,对多厂商、多种类的异源数据进行解析及标准化,使其规整统一,以利于上层应用。在解析及标准化的过程中,如何在尽量保持原有语义的情况下去粗取精、消除噪声,形成规范化的可以标准方式利用的数据词典,将是研究的重点。
学习大数据首先我们要学习Java语言和Linux操作系统,这两个是学习大数据的基础,学习的顺序不分前后。
大家都知道Java的方向有JavaSE、JavaEE、JavaME,学习大数据要学习那个方向呢?只需要学习Java的标准版JavaSE就可以了,像Servlet、JSP、Tomcat、Struts、Spring、Hibernate,Mybatis都是JavaEE方向的技术在大数据技术里用到的并不多,只需要了解就可以了,当然Java怎么连接数据库还是要知道的,像JDBC一定要掌握一下。
有同学说Hibernate或Mybites也能连接数据库啊,为什么不学习一下,我这里不是说学这些不好,而是说学这些可能会用你很多时间,到最后工作中也不常用,我还没看到谁做大数据处理用到这两个东西的,当然你的精力很充足的话,可以学学Hibernate或Mybites的原理,不要只学API,这样可以增加你对Java操作数据库的理解,因为这两个技术的核心就是Java的反射加上JDBC的各种使用。
因为大数据相关软件都是在Linux上运行的,所以Linux要学习的扎实一些,学好Linux对你快速掌握大数据相关技术会有很大的帮助,能让你更好的理解hadoop、hive、hbase、spark等大数据软件的运行环境和网络环境配置,能少踩很多坑,学会shell就能看懂脚本这样能更容易理解和配置大数据集群。还能让你对以后新出的大数据技术学习起来更快。
这是现在流行的大数据处理平台几乎已经成为大数据的代名词,所以这个是必学的。Hadoop里面包括几个组件HDFS、MapReduce和YARN,HDFS是存储数据的地方就像我们电脑的硬盘一样文件都存储在这个上面,MapReduce是对数据进行处理计算的,它有个特点就是不管多大的数据只要给它时间它就能把数据跑完,但是时间可能不是很快所以它叫数据的批处理。
YARN是体现Hadoop平台概念的重要组件有了它大数据生态体系的其它软件就能在hadoop上运行了,这样就能更好的利用HDFS大存储的优势和节省更多的资源比如我们就不用再单独建一个spark的集群了,让它直接跑在现有的hadoop yarn上面就可以了。
其实把Hadoop的这些组件学明白你就能做大数据的处理了,只不过你现在还可能对大数据到底有多大还没有个太清楚的概念,听我的别纠结这个。等以后你工作了就会有很多场景遇到几十T/几百T大规模的数据,到时候你就不会觉得数据大真好,越大越有你头疼的。当然别怕处理这么大规模的数据,因为这是你的价值所在,让那些个搞Javaee的php的html5的和DBA的羡慕去吧。
这是个万金油,安装Hadoop的HA的时候就会用到它,以后的Hbase也会用到它。它一般用来存放一些相互协作的信息,这些信息比较小一般不会超过1M,都是使用它的软件对它有依赖,对于我们个人来讲只需要把它安装正确,让它正常的run起来就可以了。
我们学习完大数据的处理了,接下来学习学习小数据的处理工具mysql数据库,因为一会装hive的时候要用到,mysql需要掌握到什么层度那?你能在Linux上把它安装好,运行起来,会配置简单的权限,修改root的密码,创建数据库。这里主要的是学习SQL的语法,因为hive的语法和这个非常相似。
这个是用于把Mysql里的数据导入到Hadoop里的。当然你也可以不用这个,直接把Mysql数据表导出成文件再放到HDFS上也是一样的,当然生产环境中使用要注意Mysql的压力。
这个东西对于会SQL语法的来说就是神器,它能让你处理大数据变的很简单,不会再费劲的编写MapReduce程序。有的人说Pig那?它和Pig差不多掌握一个就可以了。
既然学会Hive了,我相信你一定需要这个东西,它可以帮你管理你的Hive或者MapReduce、Spark脚本,还能检查你的程序是否执行正确,出错了给你发报警并能帮你重试程序,最重要的是还能帮你配置任务的依赖关系。我相信你一定会喜欢上它的,不然你看着那一大堆脚本,和密密麻麻的crond是不是有种想屎的感觉。
这是Hadoop生态体系中的NOSQL数据库,他的数据是按照key和value的形式存储的并且key是唯一的,所以它能用来做数据的排重,它与MYSQL相比能存储的数据量大很多。所以他常被用于大数据处理完成之后的存储目的地。
这是个比较好用的队列工具,队列是干吗的?排队买票你知道不?数据多了同样也需要排队处理,这样与你协作的其它同学不会叫起来,你干吗给我这么多的数据(比如好几百G的文件)我怎么处理得过来,你别怪他因为他不是搞大数据的,你可以跟他讲我把数据放在队列里你使用的时候一个个拿,这样他就不在抱怨了马上灰流流的去优化他的程序去了。
因为处理不过来就是他的事情。而不是你给的问题。当然我们也可以利用这个工具来做线上实时数据的入库或入HDFS,这时你可以与一个叫Flume的工具配合使用,它是专门用来提供对数据进行简单处理,并写到各种数据接受方(比如Kafka)的。
它是用来弥补基于MapReduce处理数据速度上的缺点,它的特点是把数据装载到内存中计算而不是去读慢的要死进化还特别慢的硬盘。特别适合做迭代运算,所以算法流们特别稀饭它。它是用scala编写的。Java语言或者Scala都可以操作它,因为它们都是用JVM的。
学习大数据的两大基础就是JAVA和Linux,学习顺序不分前后。需要同时掌握,才可以继续大数据课程的学习。
Java:大家都知道Java的方向有JavaSE、JavaEE、JavaME,学习大数据要学习那个方向呢?
只需要学习Java的标准版JavaSE就可以了,像Servlet、JSP、Tomcat、Struts、Spring、Hibernate,Mybatis都是JavaEE方向的技术在大数据技术里用到的并不多,只需要了解就可以了,当然Java怎么连接数据库还是要知道的,像JDBC一定要掌握一下,有同学说Hibernate或Mybites也能连接数据库啊,为什么不学习一下,我这里不是说学这些不好,而是说学这些可能会用你很多时间,到最后工作中也不常用,我还没看到谁做大数据处理用到这两个东西的,当然你的精力很充足的话,可以学学Hibernate或Mybites的原理,不要只学API,这样可以增加你对Java操作数据库的理解,因为这两个技术的核心就是Java的反射加上JDBC的各种使用。
Linux:因为大数据相关软件都是在Linux上运行的,所以Linux要学习的扎实一些,学好Linux对你快速掌握大数据相关技术会有很大的帮助,能让你更好的理解hadoop、hive、hbase、spark等大数据软件的运行环境和网络环境配置,能少踩很多坑,学会shell就能看懂脚本这样能更容易理解和配置大数据集群。还能让你对以后新出的大数据技术学习起来更快。
大数据作为时下火热的IT行业的词汇,随之而来的数据开发、数据仓库、数据安全、数据分析、数据挖掘等等围绕大数据的商业价值的利用逐渐成为行业人士争相追捧的利润焦点。随着大数据时代的来临,大数据开发也应运而生。
大数据开发其实分两种,第一类是编写一些Hadoop、Spark的应用程序,第二类是对大数据处理系统本身进行开发。第一类工作感觉更适用于data
analyst这种职位吧,而且现在Hive Spark-SQL这种系统也提供SQL的接口。第二类工作的话通常才大公司里才有,一般他们都会搞自己的系统或者再对开源的做些二次开发。这种工作的话对理论和实践要求的都更深一些,也更有技术含量。
大数据是未来的发展方向,正在挑战我们的分析能力及对世界的认知方式,因此,我们与时俱进,迎接变化,
Java开发介绍、熟悉Eclipse开发工具、Java语言基础、Java流程控制、Java字符串、Java数组与类和对象、数字处理类与核心技术、I/O与反射、多线程、Swing程序与集合类
Linux体系、Hadoop离线计算大纲、分布式数据库Hbase、数据仓库Hive、数据迁移工具Sqoop、Flume分布式日志框架
05、大数据分析—AI(人工智能)Data Analyze工作环境准备&数据分析基础、数据可视化、Python机器学习
大数据是互联网发展的方向,大数据人才是未来的高薪贵族。随着大数据人才的供不应求,大数据人才的薪资待遇也在不断提升。学习大数据开发,机遇和技术必不可少!
了解更多大数据先关的内容,欢迎评论或私信小慕哦,对了有帮助的话别忘了收藏+点赞呢~