牛宝体育新闻

人人都在说大数据那么大数据行业创业的方向是牛宝体育什么?

2023-07-29
浏览次数:
返回列表

  牛宝体育牛宝体育牛宝体育牛宝体育接触大数据,了解这个行业已经有两年多了,每天都在阅读大量的关于大数据的文献资料和技术文章。如果你要问我什么是大数据?以前可能我会和你说,大数据是一种思维,一种技术,标志的是大数据的4V特点:

  Volume(大量)、Velocity(高速)、Variety(多样)、Value(价值)。大数据带来的是一种变革,打破了原有的随机分析(抽样调查)方法,采用所有全量的数据来进行分析,分析的数据更加复杂,有结构化数据、半结构化数据和非结构化数据,分析结构更加注重相关性而不是因果。

  比如说,采野蘑菇/野山参这样的事情,野蘑菇和野山参的分布地点都是随机的,经验告诉我,它们会分布在哪片山林,但是我们不知道具置,得一个一个的找。大数据可以解决这个难题。

  我们可以把山林用数据可视化表现出来,然后让采野蘑菇的人根据自己的实战经验标出蘑菇分布的地点牛宝体育,并且把这些地点数据常年积累起来。然后结合野蘑菇的习性,收集每片山林的降雨量、灌木丛分布数据、土壤数据、温度数据以及山林里采蘑菇的人流量数据等等,来准确的预测出野蘑菇的分布地点。

  一言以蔽之,大数据最直接的意义就是让“随机性”的事情变得可,从而提高效率和行动价值。

  同样的思路,森林防火防贼、环境保护、旅游景点客流预测等等,都可以引入大数据思维。大数据同时也可以为我们工作、学习和生活中一些重大决策作为依据。

  今天主要说的是大数据领域的创业思考,大数据只有和生活、学习、工作以及商业等场景结合才能产生价值。推动技术发展的从来都不是技术本身,而是消费者(用户)的需求。用户不需要知道也没兴趣知道你处理大数据是用Hadoop还是Spark、原理是什么、架构是什么,用户最关心的是大数据到底怎么用,用了能为自己带来什么好处。

  今天我们将从“外部大环境”、“行业内部环境”、“创业风险”和“大数据创业机会和方向四个点来阐述主题,聪明的朋友也许已经知道了,我们的思路就是大数据领域创业的SWOT分析。

  根据贵阳大数据交易所5月28日发布的《2015年中国大数据交易白皮书》显示:2014年中国大数据市场规模达到767亿元,同比增长27.83%。预计到2020年,中国大数据产业市场规模将达到8228.81亿元。

  首先,中国大数据市场环比增长率较大。根据易观智库7月30号发布的中国大数据应用行业的报告显示,2015-2018年中国大数据市场营销规模达到258.6亿人民币。环比增长率为37.2%。

  其次,大数据在全球范围内的市场规模同样巨大,根据IDC发布最新研究结果,预测到2018年全球大数据技术和服务市场的2018年的复合年增长率将达到26.4%,规模达到415亿美元,是整个IT市场增幅的6倍。

  无论是从国内还全球的市场规模和增长率来看,我们都可以得出这样一个结论,无论你是什么样的公司,或者说你未来创业要做什么样的服务,大数据都是兵家必争之地。大数据本身就是一种无形的资产,如果你的公司还没有部署大数据,那么在未来的市场上会失去核心竞争力。就好比你走在中关村创业大街上,你能收到的100份融资BP里,可能有99份都是APP和O2O项目,但99家里90%以上会重视大数据。

  根据月6日消息,国务院公开发布《国务院关于印发促进大数据发展行动纲要的通知》,纲要里明确的说明,中国将在2018年会建成政府的大数据平台。相比之下,我们敬爱的习大大和总理也经常为大数据站台,为中国的大数据发展点赞。看政府对大数据的重视,你抬头看看前两天的北京的蓝天,就会对政府有信心了。政府真正要干一件事,执行力大的超出你的预期。

  据我们的观察,大数据领域的创业环境只会越来越好。目前,很多一线城市乃至二三线城市的科技园区,都出台了相关的扶持大数据产业的政策。如果你真的想在这个行业创业,可选择扶持力度大、人才较多的城市作为大本营,当然了,北京肯定是首选。

  上图是我们(36大数据,编者注)对大数据垂直领域2015年资本投资事件的不完全统计。其实你仔细来看图会发现,大数据行业的资本关注热度是远远高于其他行业的。这个可以从投资金额可以看出来。今年上半年O2O项目非常热,也是投资重点关注的行业,但是投资的资本里,普遍都是人民币几百万和几千万这样的量级。而大数据行业的投资,更多的资本量级都是上亿的,而且资本多源于顶级投资机构。

  “大数据就像十几岁少年眼中的性行为,每个人都在谈论它,但没人真正知道怎么做。每个人都以为除了自己之外的每个人都在使用它,所以每个人都装作自己很了解它。”

  TED的创始人Dan Ariely是这样调侃大数据的。虽然是句玩笑话,但也确实说出了大数据的行业现状。

  前面我们分析了大数据整个大环境的状况,我们知道大数据行业市场潜力巨大,未来的增长率将达37%左右。但是在中国,目前尚未出现一家如Palantir、FICO这样的垄断性质的大数据企业。也许百分点和Talkingdata都在布局上市,但是距离挂牌还有一段时间和距离。新创的大数据企业中,还没有一家在美股、港股和深交所上市。

  这是一个机会。创业你做电子商务也好,做游戏也好,都有好几家有钱有用户的巨头公司和你争抢市场份额,但是大数据行业不一样,大数据行业没有那么大的竞争压力,而且真正的战争尚未开始。

  根据数据堂统计的数据来看,新创的大数据企业中,57%的公司都在北京,上海占了15%的份额。大数据需要和实际的业务场景结合才能产生价值,工业、农业、制造、交通和能源等传统行业仍然拥有巨大的潜力,北上广深和二三线城市的大数据力量还没有完全被挖掘出来,这同样也是一个优势。

  笔者做大数据两年了,天天都听到或看到大数据的各种消息,但是生活并没有因为大数据的到来变得更智能一些。它没有让大龄光棍女青年更快更精准的找到结婚对象,也没用让隔壁老王炒股赚到更多的钱,更没有让北京的交通不再拥堵……大数据有用是不假牛宝体育,但是和生活场景结合得还是较弱。并没有看到可以称之为“变革”的现象。

  互联网上最赚钱的两大行业分别是电子商务和网络游戏,这两个行业的变现模式都是非常清晰和直接的,但是大数据的变现模式需要绕一个弯子,需要和实际业务场景结合起来才能产生价值,不直接的路定然不好走。

  有人曾经把大数据比作石油,可是,目前的情况看来,大数据行业还需要像发动机一样可以将数据转化成动力的载体。一如2010年以前一样,大家都知道手机游戏是未来的一个趋势,可是没有等智能移动设备的出现,手机游戏的市场份额就非常小,用户体量也很有限。

  根据中国商业联合会数据分析专业委员会统计,未来中国基础性数据分析人才缺口将达到1400万,而在BAT企业招聘的职位里,60%以上都在招大数据人才。2015年-2016年是大数据人才最为匮乏的两年,因为已开了大数据专业的高等院校,第一批大数据人才还为毕业;已有的人才里,复合型的人才较少,都是术有专攻。

  全球的大数据人才情况也不容乐观,据Gartner预测,到2016年,25%的全球大型企业将部署大数据分析系统;到2015年,圈球大数据人才需求将达到440万人;调查结果表明,全球64%的企业已经开始向大数据项目注资,或者打算在2015年6月之前将计划付诸实践。

  大数据创业,人才就是核心,所有的公司都在抢大数据人才,创业公司想要招到相应的大数据人才非常困难。

  49亿物联网设备:咨询公司 Gartner 预测今明两年互联物品的涨幅将达30%。分析师在指出,截止到2015年,全球物联网设备数量将从38亿飙升至49亿。

  250亿智能装置传感器:分析师预测,传感器的普及将大大加速智能设备的开发、生产进度。到2020年,将会有大约250亿部智能装置出现在全球市场。

  39ZB数据存储量:在 2014 年年底,国内网络上集中存储的数据已经达到 1ZB,到 2020 年时,当年的新增数据量将会达到 15.45ZB,整体的网络上数据存储量将会达到 39ZB,未来 6 年的年复合增长率达到了 84%。

  1、炒作过剩,实际落地产品较少;很多产品都是打擦边球;把大数据玩坏了。现在你和大家说大数据,很多人都认为你在骗人。行业想要持续稳定的发展,企业必须有自律。

  2、群众基础差,关注的人群多为三高人才,高学历高收入和高技术。从百度指数可以看出,关注大数据的人群中,53%比例的人群年龄分布为30-39岁,而20-29岁人群占的比例为28%;另外,关注大数据的男女比例里,男性占到了80%以上。这样的数字直接告诉我们的问题就是,“大数据”的话题传播性其实并不好。预计超过90%的大众用户不知道大数据是个什么东西。

  3、大数据只解决了部分2B的问题,2C产品较少。现在大家都觉得大数据的方向就是2B,我们不这么认为。打个比方说,你做2B的产品,每家企业平均给你200万,新创大数据企业你撑死了一年做上20家企业,那么营收预计在4000万左右。但是如果你做2C的大数据产品,一个用户给你200块,当你做到20万付费用户的时候,你的营收就会超过4000万。为什么呢,因为用户的数据本身就是钱。从深远的角度来说,未来的创业,你必须学会讨好大众,服务好90后,这才是种子用户。

  4、懂技术的人不懂业务,懂业务的人不懂商业。这一点不想做详细的说明,打击面太广了。笔者参加了众多大数据行业内的峰会大会小会,人人都在说大数据,可是问到你的业务如何赚钱的时候,很多人都是三缄其口。纯技术是无法赚钱的,必须和实际的业务结合起来产生商业价值,才能获益。

  5、市面上存在的大数据工具上手门槛较高。又一个槽点出来了。前面也说了,任何的新技术,都是需求推动其发展。需求来自用户。任何的新技术,只有拥抱大众用户才能得到更好的发展,接地气非常重要。现有的大数据处理工具非常复杂,需要你懂这个那个会这个那个才能使用,大众根本接触不到。现有的大数据工具也不够亲民,无论是2B也好,2C也好,你需要给别人的是一个简单动动手就能用的工具,里面有功能按钮,而不是一堆代码,最起码应该满足目前Office工作人员使用。上手门槛较高意味着很大一部分用户被你挡在了门外。将大数据处理工具产品化势在必行。

  1、人才成本较高;在美国,在R、NoSQL和MapReduce方面需求的专业人才薪水达到了每年约11万5千美元,在中国,大数据人才一将难求,创业公司不容易招大数据技术人才,即使招到,人才方面支出也较高。包括高薪、期权和股票等等;

  2、存储硬件成本高;考虑到数据归属和安全性。大数据公司一般不会数据存在云上。 自建机房比云存储成本高很多倍。

  3、项目启动资金高;不是30-50十万就可以玩起来的,比移动互联网APP创业项目启动资金要求高。

  没有明确的商业变现模式,这是目前大数据创业的最大门槛。 拼数据,你拼不过阿里百度腾讯,拼钱,还是算了……

  据Verizon发布的《2015年数据泄露调查报告》显示,79790个安全事件中已有2122个确认的数据泄露。值得关注的是在2015年的报告中新增了一个统计模型,用以帮助企业评估到底每笔数据泄露,要损失多少钱。如果泄露1000条记录时,有95%的可能会损失5.2万-8.7万。泄露1千万数据记录的花费介于210万到520万之间,但最多可能到7390万。

  让我们来回顾一下近年来数据泄漏的事件:2014年5月,800万小米用户数据或被泄露;2014年12月,12306大量用户信息遭泄露;2015年4月,超30省市曝管理漏洞数千万社保用户信息或泄露;2015年5月,携程网全面瘫痪疑似数据库物理删除;2015年6月,美国人事管理局(OPM)被指出大量工作人员信息泄露;2015年8月,婚外情网站Ashley Madison数据遭泄露……

  对于大数据新创企业来说,数据的安全性就是“命”,如何保命事关生存。大数据的安全性,是部署大数据架构和大数据创业最大的挑战之一!

  关于大数据隐私,在美国有隐私法案,而且美国与欧盟之间还签署了安全港、隐私声明等等。而在中国,目前的立法是非常模糊的,属于灰色地带。手机号码被恶意第三方收集了,然后给用户发了很多垃圾短信,或者我的姓名,我的电话,我的邮箱,他们收集我的信息是不是合法的,目前这一点在在立法上都不清晰。不知道未来国家会不会出台相关的法律法规来规范这个领域?大数据隐私目前具有不确定因素,也是创业存在的风险之一。

  对于大数据项目,投资人到底看什么?在写这篇文章之前,我们与多家投行的投资人曾经做过访谈,下面是我们根据访谈内容整理出来的内容。

  大数据没有直截了当的变现模式,那么一个新创大数据企业想要获得成功,拿什么去拼?当然是人才。这也是投资人最关注的东西。

  投资人告诉笔者,对于一个大数据项目,他们最看重的是团队。那怎么看团队呢?一般从团队技术能力、背景、过往项目经验和创始人四个方面来看。大数据对技术的要求非常高,投资人看项目的时候,首先看的就是创始人的技术能力。一般情况下,投资者会更加青睐拥有技术背景的创始人和他的项目。

  还有就是看项目的商业模式和变现能力。看项目方面,投资人会去看你的项目对应的国外成熟企业,或者说你的项目对应的竞争者是谁。由竞争者经营的情况来预估你在其领域的市场份额和变现能力。商业模式方面,投资者会看你的客户(用户)体量和数据源。你的客户群体有多大?你手里有哪些具体业务上的数据?这些数据如何产生价值,应用到你的客户身上?解决好这3个问题就成功了一半。

  大数据项目变现方向,投资人关注的是你的项目是否能够快速直接的产生价值,而且有持续的创收能力。

  第一个是Hadoop 商业化,简单来说就是做Hadoop的收费版本。Hadoop本来是开源的,但是在具体业务场景中,还缺乏很多功能,那么Hadoop 商业化就是去完善这些功能,使其更好的应用于企业的业务场景。Hadoop 商业化最典型的公司就是Hadoop的三驾马车,Hortonworks,Cloudera和MapR,Hortonworks目前已经在纳斯达克上市。中国相应的做Hadoop 商业化的公司是星环科技。

  第二个是SQL on Hadoop,用大白话来说就是基于应用场景下的数据框架 。比如说大数据架构里的查询引擎、存储引擎、计算模型等等,这个主要是基于大数据技术方向的,比如说WibiData,它提供了对Hadoop的封装,连接前端应用到Hadoop基础设施。

  第三个是NoSQL数据库,非关系型数据库和云数据库服务。典型的国外企业有MongoDB 和Datastax。目前,创业公司MongoDB的估值已超过16亿美元,而在中国,基础云服务商青云QingCloud已经推出了基于MongoDB的集群服务,名字叫做青云QingCloud MongoDB。

  第四个是分析和可视化。对应的国外企业有Tableau、Datameer。国内新创的大数据企业中,也有很多大数据企业在做可视化服务,比如说国云数据的大数据魔镜。

  第五个是行业大数据应用。为社交媒体、广告公司、企业客户、电子商务等行业客户提供数据分析,帮助这些行业提升数据分析的水平,如DataSift、RelateIQ、RocketFuel等创业公司。

  2B是目前大数据行业主要的商业模式,将大数据变为一种服务,服务的对象是企业或机构。比如现有的大数据企业里,星图数据,Hortonworks,Cloudera,星环科技、Talkingdata 都是2B的商业模式。从他们的运营状况,不难看出,2B的商业模式,要么是做解决方案(类似外包),要么就是做工具。

  预计未来所有的互联网企业也好,传统企业也好,都会在企业内部成立大数据部门,那么到那个时候,解决方案的市场份额还会多么?不肯到也不否定。对于一家企业来说,大数据就是自己的资产,相信企业更倾向于自己管理自己的内部资产。所以我们大胆的预测,解决方案只是目前大数据行业的权宜之计,未来企业会用自己的人才管理自己的大数据,用自己的人才使用自己的大数据。做工具是目前较为主流的模式。Palantir其实也是做工具。

  2C方面,在整理这份内容的时候,我们发现2C的产品非常少。女性经期助手、百度指数这样勉强算是2C的大数据产品。而大数据2C方面的产品,更多的是倾向于应用。可穿戴设备其实也算是大数据应用产品之一。

  说了这么多,你肯定会问我了,那么腾讯、百度和阿里巴巴这样的企业,他们的大数据又是什么样的模式呢?在笔者看来,BAT企业的大数据商业模式都是2C+2B的模式,我们可以简称为复合型的商业模式,因为他们服务的用户有企业用户也有个人用户。

  总结一下,现有的商业模式里,哪个最好?笔者个人认为是2B+2C模式。这样的模式是最健康的模式,形成了一个商业闭环。

  用一句话来说就是:你收集用户的数据,分析出报告,然后给到的对应的企业,对应的企业根据数据反馈,从而开发或制造出更好的产品,让用户享受更智能更美好的生活。这整个过程中,大数据是贯穿始终的。

  1、广告、营销。这一类主要集中在第三方大数据营销公司里。典型的企业包括缔元信、时趣这样的公司。他们主要的业务就是帮助大数据分析能力较弱的公司来做大数据分析,优化广告和营销的路径,使市场投入的非常产生更大的价值。

  3、做工具或者服务。目前的移动统计工具就是这一类,还有做Hadoop套件的也是这一类公司。

  4、卖报告或解决方案的。做大数据解决方案的公司就太多太多了,典型的公司为IBM。

  Talkingdata联合创始人蒋奇先生告诉我们,Talkingdata后台有移动互联网各个热门手机游戏的数据,包括用户的设备数据、行为数据、日常数据和游戏里的消费数据等等。根据这些数据,可以对这些游戏用户进行用户画像。

  以招行信用卡推广为例,Talkingdata通过大数据分析发现,《刀塔传奇》以及《我叫MT》这两款游戏的用户属性和招商银行信用卡中心需要的用户属性很契合,于是促成了招商银行和的合作,还支持了后续的信用卡积分的礼包和活动等。

  这次合作为招行信用卡带来了5万个绑定用户。一般情况下,银行类的应用要实现转化的平均成本在两百到三百块钱之间,而这样的跨界合作,招商银行基本上没花一分钱,就达到了5万转化率,理论上省掉了上千万的费用。这就是跨界和融合。

  跨界和融合,其实也是大数据思维里最重要的一环。大数据就像是钱一样,你得让它流动起来才能产生价值。

  大数据创业的2B方向,更多的是做工具和服务,如数据可视化、商务智能、CRM等。

  现有的大数据工具有着技术门槛高、上手成本高、和实际业务结合较差以及部署成本高,小公司用不起等特点。那么新创企业就可以根据以往这些产品的缺陷,来做更适合市场和客户的大数据分析工具和服务。另外,将大数据工具完整化和产品化也是一个方向。新一代的大数据处理工具应该是有着漂亮UI,功能按键和数据可视化等模块的完整产品,而不是一堆代码。

  大数据一个很大的作用就是为决策做依据,以前做决定是“拍脑袋”决定,现在,做决定是根据数据结果。在我们的生活中,需要做决策的时候太多太多,尤其是像笔者这样选择性困难的天秤座,非常需要大数据来辅助决策。个人理财(我的钱花哪去了,哪些可以省下来)、家庭决策(孩子报考哪所大学)、职业发展/自我量化(该不该跳槽,现在薪水到底合适不合适 )以及个人健康都可以用到大数据。

  1、想清楚谁为你买单(找用户);2、痛点是什么(找需求);3、稳定/独特的数据源(找数据);4、靠谱的人做靠谱的事(找人才);5、考虑2C的产品方向;6、忘记科技行业过往经验;7、将大数据产品化 (小而美);8、深耕一个领域,不断的试错和迭代。

  其他新创大数据公司创始人也提出过自己的建议。九次方大数据集团总裁王参寿认为深耕大数据领域,坚持才是王道:“大数据行业创业就像爬泰山,爬不到山顶,看不到太阳。”

  国云数据CEO马晓东表示,“不要跟着概念创业,从真实需求出发,从企业和用户对数据的需求出发做大数据产品,找准自己的定位是关键。”

  我是桑文锋,Sensors Data的创始人&CEO,目前正好在做大数据方向的创业,我谈谈我自己的创业方向。

  我个人2007年浙大研究生毕业后就加入百度,在百度呆了8年,第一年在做研发,从2008年开始基于Hadoop做了个日志统计平台,因为大大提升了开发效率和运行效率,经过一年半的时间统一了全百度的日志统计工作,之后一直围绕数据方向。在2011、2012年的时候,大数据的概念火了,我忽然发现我掌握的技术竟然变得很有价值。但我当时觉得这些技术是屠龙术,哪里有龙——B、A、T,我换工作也只能这三家跳来跳去。

  可这两年我发现有两个比较大的变化,一是移动互联网的发展,大家上网时间长,产生了更多的用户数据,二是传感器的发展,就像我的Apple Watch可以采集我的心率和运动数据,采集了更多的数据源。这就导致了即使一个创业公司,也拥有比较多的数据。大数据的理念让大家认识到了数据的重要性,一个创业公司也想做数据分析。但这块的人才又稀又贵牛宝体育,以前只有BAT培养了一批。这块技术很复杂,招一两个不顶用,只能满足常规统计需求。要想开发一套大数据分析平台,起码需要3-5人做上半年以上,这只能做个60分的东西,研发投入非常大。这里就有一个Gap,我们可以提供市场一个90分的数据分析工具,来解决大家的需求。

  市面上已经有了一些统计分析工具,如做的比较好的百度统计,友盟等。它们简单易用,并且免费。但还有些不足。一是数据源上,只能通过Js或App SDK覆盖客户端的数据收集,但服务器和数据库的数据无法采集到,这样在数据源上就不够全。我在百度这几年的数据处理心得是,要想把这件事做好,最重要的就是数据源。数据源整好了,后面的事情都好办,数据源要尽量整的全和细。二是分析能力上,因为是标准的SaaS,只能提供一些宏观基础的统计分析,一些深度的数据分析是做不到的。如来自北京的年龄到20-25之间的女性用户,最近一个月有十次购买行为,我想分析她们的客单价情况。三是数据安全上,稍大一点规模的公司,不愿意把自己的核心数据放在第三方平台上。

  我们Sensors Analytics是一个纯粹的数据分析工具,不拥有用户的任何数据。相比之下,有三个特点,一是提供私有部署和Cloud版,对数据安全比较顾虑的,可以选择私有部署,这样部署在客户自己的服务器上,数据根本不会出公司,这样就没了数据安全问题。二是我们提供灵活的多维分析,用户只要把维度接入进来,就可以进行实时的多维交叉分析,秒级响应。至于我们为啥在这块这么有信心,请看我的文章《

  》。三是帮助客户搭建了底层的数据仓库。我认为数据的用途主要有两点,数据驱动决策和数据驱动产品。我们所说的BI,都是在支持决策拍板的。但我认为这里只发挥了数据的20%价值,更大的价值在于数据驱动产品,就像百度搜索中,那些用户点击量比较大的结果,排在前面,让产品更智能。如果要做后者,使用了已有SaaS服务,就要从零开始构建数据的采集、传输、建模存储、查询分析这一整套底层架构,而用我们的产品等于一箭双雕,帮你打好地基,可以在此基础上进行二次开发,对接已有的CRM或做数据挖掘。

  我们产品9.25正式对外发布了,所谓发布就是在朋友圈转发一下,我本来以为有100个试用申请就不错了,结果两天时间就有了500个,大大出乎我的意料,说明市场需求还是很旺盛的。目前已经有了30家正式客户,包括爱鲜蜂,多盟,AcFun等。

  说了这么多,到底这东西是怎么一回事。我写过一篇文章分析产品正式发布那两天用Sensors Analytics分析我们自己官网的情况,见《

  本人目前在A从事2B的大数据解决方案与产品设计工作,以大数据商业化为目标,各行业客户都有,简单跟大家分享下我们目前的大数据落地实操经验。

  大数据这块做的好的平台, 就个人来看,A算做的不错了,从云计算的布局到大数据,步步为营,也是筚路蓝缕。大公司的优势在于三个字,熬的起。业务几乎都是以平台、生态的构建为目标,最终是enable别人成功,并从别人成功中获益的模式。

  这块之前我还存在一定的误区,认为电商行业的经验固然重要,但是真正实操应用其他行业的时候,可能失效。这块关键的是

  。比如电商沉淀下的大数据管理、用户标签体系设计、流计算/实时计算的场景与应用、个性化推荐的策略等等,当遇到类似场景的时候,你会心领神会的借鉴当初的思路,去帮助其他行业解决,去探索。填充了你的弹药库,而不是两眼一抹黑的干。另一方那面,电商行业的成功经验,

  ,在大数据的平台首页 - 数加平台上架官方的大数据产品,冷启动数据市场,比如我们的推荐引擎、DataV可视化引擎、数据开发工具、机器学习平台,这些原来都是内部用户的,或者电商用的,现在拿出来,让其他行业用,能够

  ,为后续的大数据业务一方面提供成型的基建如ECS、OSS、OTS、ADS等等,可以说很好的解决了“存”的问题,另一方面,多年积累的客户,

  在IAAS温饱满足的同时,有客户特别是头部的大B客户越来越多涌现比如如何用好数据、加工数据、用数据助力业务的诉求

  。一般业务刚兴起时缺人比较严重的首先是前端大数据、其次是产品,然后是数据、算法,待到技术可行的阶段,就是销售。大公司的人才储备,特别是复合型的人才,能够为新兴业务发展快速注入新鲜血液,并通过转岗机制确保良性兼容,老人做新业务,非常高效。

  这块并非绝对,当然很多场合下,阿里巴巴这个品牌本身就是实力、信誉的保障。今天我们对外输出大数据能力的时候,很多时候确实也利用到了这块的影响力,毕竟数据业务本身是一个公司的核心资产,对乙方都需要在技术与商业道德上进行双重考量,所以很多号称“第三方独立”数据服务公司也就浮出水面,

  我们从商业层面去做大数据业务,通过商业来拓展技术的边界,同时也让客户认可价值,并买单,从而变现。更准确的讲,我们现在不是做大数据变现,而是做的大数据能力变现,将我们在人工智能、数据管理、数据应用的框架、引擎去帮助客户解决具体的业务问题,帮客户用好自己的数据是第一要务,然后才是用别人的数据补充自己,最后才是用自己的数据服务别人。我们看几个典型的场景

  互联网公司一般跑的比较快,特别是业务,很多时候初期是堆人、砸钱来堆用户数、订单等,技术外包比较常见,特别是当前环境。理所当然,这块也带来了大数据业务的机会,比如在020外卖场景下,如何分配好订单,使得运力的利用率最大化,同时在指定时间内能满足叫单需求。这类业务可以说之前就没出现过,也几乎没多少人工运营的经验,很多时候运营就是凭直觉也好,或者所谓的经验也好,来派发订单。我们的机会点在于:虽然这是对方的核心业务,但是总这块内容需要人,一时半会招不到人,同时不做这块业务,每天会有大量的补贴在补贴运力与处理投诉,是很大一笔开支,从这两点考虑,是不是该做?

  该公司技术县先进,能够进行快速实景的3D建模,但是有个“最后一公里” 的问题非常致命,现有的重绘技术比较落后,需要2-3天才能重新根据大量测绘数据绘制出3D模型,不及时,使得应用的场景受限。能否将原来绘制时间由天级别缩短到小时级别甚至分钟级别?从而拓展应用场景,更好的进行商业化?

  客户是世界最大的某材料生产企业之一,日产千万件,每件根据质量划分不同的等级,不同的等级价格不同,而良品率的提升直接与收益挂钩,客户已经具备初步的数据采集能力,但存储的数据未开发,也带来不小的存储成本,生产流程靠经验或理论,没有快速优化与验证的闭环,如何利用现有数据,提升良品率优化生产线?去低效产能的同时,赋能“智”造! ?

  可以看到,目前的玩法并不是通常意义上大家理解的精准营销、广告、人群画像,或者输出一份分析图表的大数据,而是从客户的问题出发,并且直接影响到生产或者业务效果的落地,让客户认可我们的价值,从而来商业化。

  一般而言,作为平台方位保障公平,我们不会既做裁判员、又做运动员,大部分情况下,平台做提供的是通用型的产品、基础性的服务,留出二次开发、增值开发的空间,enable别人成功。当然现阶段为了更好的启发市场,平台方需要自己做出标杆,告诉大家怎么做,从而揭竿而起,期望应者云集,基于我们的云平台来创新、创业。在这个框架下,有几点痛点:

  ,我们挖掘的场景很多牛宝体育,技术需求量比较大,比如算法、比如前端、可视化设计等,我们缺合格靠谱的技术型ISV来与平台共建、分成。

  对于平台现在提供的产品与服务,我们缺强力的合作伙伴,能够挖掘现有产品的业务价值

  对于有任何数据沉淀的合作伙伴,我们都欢迎一起坐下来聊聊,共同开发数据价值,服务云上客户。

  对于平台暂时无法满足一些行业垂直类需求,我们期望能够联合这方面有突出能力的合作伙伴一起打单

  分析到这,差不多也比较明确,创业者的机会抓住以下几点关键词:独立第三方、基于云牛宝体育、补生态,再明确下:

  :可以基于云,帮忙卖平台的成品(渠道)、可以基于平台的服务或者产品二次加工再卖(增值服务),可以做自己独立的产品(合作共建),配合平台一起打单。

  :可以是三五个人,无论是算法还是数据能力,基于我们的阿里云大数据众智平台,接活。

  :将自身无论通过哪类渠道沉淀的数据,通过平台提供的产品,对外输出,进行变现。借助平台的力量帮助变现。

  如果我们不看生态,或者不依赖平台,当然也可以,我个人对大数据业务或者说大数据产品的判断:

  对于不同的创业者,就看你主打的是哪一块,不同的创业方向在这三块有不同的打法与侧重,对于我个人而言,我会主攻AI,另外的两部分视情形而定。也就是用AI/大数据能力,形成服务壁垒,从而进行变现。

  ,先在一个行业下做出1、2个客户,然后沉淀框架与产品,然后打爆一个行业/子行业,然后再考虑延展性。没有深度的服务能力很多时候是做不出效果与爆点。

  。公司在对外提供服务的时候,如果是基础类的服务,请将数据做成在线,可计量计费,跑量,以量取胜,当然如果这类服务还自带吸数据的属性,那就完美了比如风控接口。如果提供的是行业智能化/算法类项目,走价,做出溢价,比如panlantir。

  大数据。产品的抽象与沉淀过程,意味着你的目标与方向,这点没想明白就不要做了。

  ,定价是反应你对市场了解的唯一标准,甚至是检验产品的重要属性,定价过程反映了业务模式与打法。

  ,大数据业务本来就是技术类的产品,好的商务可以帮你快速弥补产品与客户之间的GAP,不仅仅是演示,更需要舌灿莲花,更需要从客户的视角来验证我们产品对他们的重要性

  这是一个非常好的问题,也是目前大数据行业应该重点关注的问题,如何为创业型企业,尤其是广大中小型创业企业赋能,将是大数据完成落地应用的一个重要突破口。

  目前大数据行业领域的不少企业存在一定的发展问题,虽然这其中的原因是多方面的,但是一个重要的原因是当前不少大数据企业,没有找到一条适合自己可持续发展的道路,只把目光锁定在大企业、大项目上。

  大数据要想真正落地,一定要让广大中小型创业企业能够通过大数据获得助力,这个领域的市场空间也非常大。实际上,中小企业的创业者对于大数据的需求往往更强烈,诉求也更加明确,这对于推动大数据行业的发展也具有非常积极的意义。

  第一:整合更多的发展资源。创业企业往往并不会具备较强的资源整合能力,比如客户资源、技术资源、人力资源、行业资源、资金资源等都是创业企业比较关心的,而大数据就能够在一定程度上提升企业的资源整合能力。大数据整合资源的方式有很多种,其中一个重要的方式就是让创业企业与更多的资源建立各种形式的“链接”,有了“链接”也就有了整合的机会。

  第二:提供更强大的管理能力。企业的很多发展问题,归根到底就是管理问题,对于创业企业来说也是如此,甚至有更为明显的体现,而通过大数据可以更加高效合理地完成企业运营管理。以团队成员考核为例,传统的考核方式(各种KPI等)在大数据时代,正在被价值考核所取代,这不仅让团队成员知道目标在哪,更能够让团队成员知道该怎么做。

  第三:提升管理者的决策能力。大数据目前一个最为常见的落地应用就是场景决策,也可以说成是大数据场景分析,目的就是能够提升决策者的决策能力。

  我从事互联网行业多年,目前也在带计算机专业的研究生,主要的研究方向集中在大数据和人工智能领域,我会陆续写一些关于互联网技术方面的文章,感兴趣的朋友可以关注我,相信一定会有所收获。

  如果有互联网、大数据、人工智能等方面的问题,或者是考研方面的问题,都可以在评论区留言,或者私信我!

  其实目前大数据就是做的人群定向,人群定向就是为了投广告,所以大数据就是投广告用的。希望长篇大论的人们,你们做点实事突破这个。

搜索